MG-132 细胞通透性的、可逆性的蛋白酶体抑制剂。 |
Sample solution is provided at 25 µL, 10mM.
- 1. Dongdong Zhao, Jian Meng, et al. "RPS23RG1 is Required for Synaptic Integrity and Rescues Alzheimer’s Associated Cognitive Deficits." Biological Psychiatry Available online 25 August 2018.
- 2. Xiao G, Li Y, et al. "FBXW7 suppresses epithelial-mesenchymal transition and chemo-resistance of non-small-cell lung cancer cells by targeting snai1 for ubiquitin-dependent degradation." Cell Prolif. 2018 Aug 9:e12473. PMID:30094882
- 3. Chao Qin, Rui Zhang, et al. "Bclaf1 critically regulates the type I interferon response and is degraded by alphaherpesvirus US3" bioRxiv. 2018 August 16.
- 4. Bao Y, Yang F, et al. "Angiopoietin-like protein 3 blocks nuclear import of FAK and contributes to sorafenib response." Br J Cancer. 2018 Jul 23. PMID:30033448
- 5. Selvarangan Ponnazhagan, Vinayak Khattar, et al. "Structural determinants and genetic modifications enhance BMP2 stability and extracellular secretion." bioRxiv. 2018 July 20.
- 6. Ji J, Xu R, et al. "Actin like-6A promotes glioma progression through stabilization of transcriptional regulators YAP/TAZ."Cell Death Dis. 2018 May 3;9(5):517. PMID:29725063
- 7. Lv XM, Li MD, et al."Neotuberostemonine inhibits the differentiation of lung fibroblasts into myofibroblasts in mice by regulating HIF-1α signaling." Acta Pharmacol Sin. 2018 Apr 12. PMID:29645000
- 8. Lee S, Tumolo JM, et al. "Ubiquitin turnover and endocytic trafficking in yeast are regulated by Ser57 phosphorylation of ubiquitin." Elife. 2017 Nov 13;6. pii:e29176. PMID:29130884
- 9. Wang Y, Lu S, et al. "Sonic hedgehog induces GLT-1 degradation via PKC delta to suppress its transporter activities." Neuroscience. 2017 Oct 6;365:217-225. PMID:28993237
- 10. Wang Z, Gao Y, et al. "Quinolinate Phosphoribosyltransferase is an Antiviral Host Factor Against Hepatitis C Virus Infection." Sci Rep. 2017 Jul 19;7(1):5876. PMID:28724915
- 11. Wang X, Liu X, et al. "Sensitivity to antitubulin chemotherapeutics is potentiated by a photoactivable nanoliposome." Biomaterials. 2017 Jun 23;141:50-62. PMID:28667899
- 12. Ho HC, MacGurn JA, et al. "Deubiquitinating enzymes Ubp2 and Ubp15 regulate endocytosis by limiting ubiquitination and degradation of ARTs." Mol Biol Cell.2017 May 1;28(9):1271-1283. PMID:28298493
- 13.Shanzer M, Adler J, et al. "The nonreceptor tyrosine kinase c-Src attenuates SCF(β-TrCP) E3-ligase activity abrogating Taz proteasomal degradation. "Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1678-1683. PMID:28154141
- 14.Scott N. Ashley. "Impact Of Host Factors On The Adaptive Immune Response To Aav Gene Therapy." University of Pennsylvania. 2017.
- 15.Dr. Brenda Lilly, Advisor Dr. Joy Lincoln, et al. "The Roles of the Notch2 and Notch3 Receptors in Vascular Smooth Muscle Cells" The Ohio State University. 2016 Nov.
- 16. Liu Z, Moran GP, et al. "Amplification of TLO Mediator Subunit Genes Facilitate Filamentous Growth in Candida Spp." PLoS Genet. 2016 Oct 14;12(10):e1006373. PMID:27741243
- 17. Boyd Tressler, Andrea Michelle. "Mechanisms of Extracellular Nucleotide Accumulation During Regulated Cell Death in Tumor Cells."rave.ohiolink.edu,May 2016.
- 18. Gunderwala A, Porter J. "A luminescence assay for natural product inhibitors of the Mycobacterium tuberculosis proteasome." Phytochem Anal. 2016 Mar;27(2):126-32. PMID:26778282
- 19. Moshe, Adi, et al. "Tomato plant cell death induced by inhibition of HSP90 is alleviated by Tomato yellow leaf curl virus infection." Molecular plant pathology (2015). PMID:25962748
- 20. Baeten, Jeremy T., and Brenda Lilly. "Differential Regulation of NOTCH2 and NOTCH3 Contribute to their Unique Functions in Vascular Smooth Muscle Cells." Journal of Biological Chemistry (2015): jbc-M115. PMID:25957400
- 21. Boyd-Tressler, Andrea, et al. "Chemotherapeutic Drugs Induce ATP Release via Caspase-gated Pannexin-1 Channels and a Caspase/Pannexin-1-Independent Mechanism." Journal of Biological Chemistry (2014): jbc-M114. PMID:25112874
- 22. Giovinazzi S, Sirleto P, et al. "Usp7 protects genomic stability by regulating Bub3." Oncotarget. 2014 Jun 15;5(11):3728-42. PMID:25003721
质量控制和MSDS
- 批次:
相关生物数据

相关生物数据

相关生物数据

相关生物数据

相关生物数据

相关生物数据

相关生物数据

相关生物数据


MG-132 Dilution Calculator

MG-132 Molarity Calculator
CAS号 | 133407-82-6 | SDF | Download SDF |
别名 | MG132,Z-LLL-al,Z-Leu-Leu-Leu-CHO | ||
化学名 | benzyl N-[(2S)-4-methyl-1-[[(2S)-4-methyl-1-[[(2S)-4-methyl-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]carbamate | ||
SMILES | CC(C)CC(C=O)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)OCC1=CC=CC=C1 | ||
分子式 | C26H41N3O5 | 分子量 | 475.6 |
溶解性 | ≥23.78mg/mL in DMSO | 储存条件 | Store at -20°C该产品在溶液中不稳定,建议现配现用 |
运输条件 | 试用装:蓝冰运输。 其他可选规格:常温运输或根据您的要求用蓝冰运输。 |
||
一般建议 | 为了使其更好的溶解,请用37℃加热试管并在超声波水浴中震动片刻。不同厂家不同批次产品溶解度各有差异,仅做参考。若实验所需浓度过大至产品溶解极限,请添加助溶剂助溶或自行调整浓度。 |
描述 | MG-132是一种蛋白酶体抑制剂,IC50为100 nM,也可以抑制钙蛋白酶,IC50为1.2 μM。 | |||||
靶点 | Proteasome | |||||
IC50 | 100 nM |
激酶实验: | |
MG-132对蛋白酶体9的抑制活性 |
MG-132是一种肽醛,可以有效阻断蛋白酶体9的蛋白水解活性。已有研究表明,蛋白酶体的抑制剂 (包括MG-132)通过形成活性氧(ROS)从而诱导凋亡性细胞死亡。蛋白酶体抑制剂引起的ROS的形成和谷胱甘肽(GSH)的耗竭可能导致线粒体功能障碍和随后细胞色素c的释放,从而导致细胞活力的丧失[1,2]。 |
细胞实验: | |
细胞系 |
A549细胞、人宫颈癌HeLa细胞、HT-29结肠癌细胞、MG-63骨肉瘤细胞等。 |
溶解方法 |
在DMSO中的溶解度>23.8mg/mL。为了获得更高的浓度,可以将离心管在37℃加热10分钟和/或在超声波浴中震荡一段时间。原液可以在-20℃以下储存几个月。 |
反应时间 |
24-48小时 |
应用 |
MG-132是一种膜通透性的蛋白酶体抑制剂。在PC12细胞中,MG-132(10 μM) 可用于诱导神经突触的生长。MG-132剂量依赖地抑制A549细胞的生长,IC50值为20 μM。MG-132也可以抑制人宫颈癌Hela细胞的生长,IC50值约为5 μM。0.5 μM的MG-132就可以显著减少Hela细胞的生长,诱导细胞死亡[3]。MG-132通过诱导G2 / M期细胞周期停滞从而抑制HT-29结肠癌细胞和MG-63骨肉瘤细胞的生长[5]。在氯化锰处理的A549细胞中,MG-132延长G0 / G1期停滞的时间。MG-132也可以诱导胃癌细胞中G1期停滞[6]。 |
动物实验: | |
动物模型 |
C57BL小鼠 |
剂量 |
~10 μg/kg/天,尾静脉或腹腔注射。 |
溶解方法 |
溶解于DMSO中用于制备10 mg/ml的储备原液,工作液可用PBS或生理盐水进行稀释,pH等于7。 |
注意事项 |
请测试所有化合物在室内的溶解度,实际溶解度和理论值可能略有不同。这是由实验系统的误差引起的,属于正常现象。 |
References: 1. Ling YH, Liebes L, Zou Y and Perez-Soler R. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells, 2003; 278: 33714–33723. 2. Qiu JH, Asai A, Chi S, et al. Proteasome inhibitors induce cytochrome c-caspase-3-like protease-mediated apoptosis in cultured cortical neurons. J Neurosci 2000; 20: 259–265. 3. YH. Han, WH. Park, MG132 as a proteasome inhibitor induces cell growth inhibition and cell death in A549 lung cancer cells via influencing reactive oxygen species and GSH level, Human and Experimental Toxicology, 29(7) 607–614. 4. Wu WK, Wu YC, Yu L, et al. Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells. Biochem Biophys Res Commun 2008; 374: 258–263. 5. Yan XB, Yang DS, Gao X, et al. Caspase-8 dependent osteosarcoma cell apoptosis induced by proteasome inhibitor MG132. Cell Biol Int 2007; 31: 1136–1143. 6. ZhangW, Tong Q, Li S, Wang X andWang Q.MG-132 inhibits telomerase activity, induces apoptosis and G(1) arrest associated with upregulated p27kip1 expression and downregulated survivin expression in gastric carcinoma cells. Cancer Invest 2008; 26:1032–1036. |
Abstract
MG-132 significantly increased MCPIP1 expression through a mechanism involving de novo mRNA synthesis and activated apoptosis through induction of caspases 3/7 in HepG2 and HeLa cells.
Abstract
Intraperitoneal administration of MG-132 reversed several pathogenic changes in OVE26 diabetic mice though up-regulation of Nrf2-mediated antioxidative function and down-regulation of NF-KB-mediated inflammation.
Abstract
The combination of MG-132 and camptothecin exhibited strongest cytotoxicity against MIA PaCa-2 pancreatic cancer cells though promoting apoptosis induced by caspase-3 that is possibly associated with up-regulation of Noxa and down-regulation of Mcl-1. However, the combination of MG-132 and doxorubicin exhibited less cytotoxicity due to decreased apoptosis correlated with high levels of Mcl-1.
Abstract
Administration of DJ-1 protein in rats pre-treated with MG-132 resulted in the reduction of α-synuclein mRNA, hypoxia-inducible factor 1α mRNA and α-synuclein protein.
Abstract
MG-132, a peptidyl-aldehyde proteasome inhibitor, induced differentiation of PC12 cells that was accompanied by phosphorylation of TrkA, prolonged activation of Src and activation of ERK1/2 with nuclear translocation of Src.
MG132是一种肽醛,可以有效地阻断蛋白酶体的蛋白水解活性, 包含苄酯基 - 亮氨酸 - 亮氨酸 - 亮氨酸序列。据报道,蛋白酶体的抑制剂 (包括MG132)可以通过形成活性氧(ROS)从而诱导细胞凋亡。蛋白酶体抑制剂引起的ROS的形成和谷胱甘肽(GSH)的耗竭可导致线粒体功能障碍和随后细胞色素c的释放,从而导致细胞活力的丧失。
MG132剂量依赖性地抑制A549细胞的生长,IC50值为20 μM。MG-132也可以抑制人宫颈癌Hela细胞的生长,IC50值为5 μM。同样的,0.5 μM的MG-132就可以显著减少Hela细胞的生长,并诱导细胞死亡。MG132对细胞生长的抑制取决于孵育的剂量和细胞类型。
MG132可以显著阻滞G1期。MG-132通过诱导G2 / M期阻滞从而抑制HT-29结肠癌细胞和MG-63骨肉瘤细胞的生长。在氯化锰处理的A549细胞中,MG-132可以延长G0 / G1期阻滞。同时,MG-132可以诱导胃癌细胞中G1期的阻滞。MG132对泛素-蛋白酶体系统的作用可能导致不同的细胞周期阻滞,这取决于不同的肿瘤细胞系。
已有研究表明,蛋白酶体的抑制剂 (包括MG132)可以通过形成活性氧(ROS)从而诱导凋亡性细胞死亡。MG132通过诱导细胞周期阻滞从而触发细胞凋亡,从而抑制A549细胞的生长,这与ROS和GSH水平的变化具有一定的相关性。
参考文献:
1. Ling YH, Liebes L, Zou Y and Perez-Soler R. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells, 2003; 278: 33714–33723.
2. Qiu JH, Asai A, Chi S, et al. Proteasome inhibitors induce cytochrome c-caspase-3-like protease-mediated apoptosis in cultured cortical neurons. J Neurosci 2000; 20: 259–265.
3. YH. Han, WH. Park, MG132 as a proteasome inhibitor induces cell growth inhibition and cell death in A549 lung cancer cells via influencing reactive oxygen species and GSH level, Human and Experimental Toxicology, 29(7) 607–614.
4. Wu WK, Wu YC, Yu L, et al. Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells. Biochem Biophys Res Commun 2008; 374: 258–263.
5. Yan XB, Yang DS, Gao X, et al. Caspase-8 dependent osteosarcoma cell apoptosis induced by proteasome inhibitor MG132. Cell Biol Int 2007; 31: 1136–1143.
6. ZhangW, Tong Q, Li S, Wang X andWang Q.MG-132 inhibits telomerase activity, induces apoptosis and G(1) arrest associated with upregulated p27kip1 expression and downregulated survivin expression in gastric carcinoma cells. Cancer Invest 2008; 26:1032–1036.
7. Wu HM, Chi KH, Lin WW. Proteasome inhibitors stimulate activator protein-1 pathway via reactive oxygen species production. FEBS Lett 2002; 526: 101–105.